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Abstract

Johnson’s Suzuki coupling protocol was employed to prepare C-glycoside analogs of phlorizin (1). In
vitro biological evaluation of these C-glycosides indicated the anomeric oxygen is important to the SGLT
inhibitory activity of phlorizin (1) and related agents. © 2000 Elsevier Science Ltd. All rights reserved.

Noninsulin dependent diabetes mellitus (NIDDM) is a substantial and growing international
health problem.1 Treatments of the disease are sought by the development of pharmaceuticals
which alleviate hyperglycemia.2 One potential strategy is inhibition of the Na+/glucose cotrans-
porters (SGLTs) found in the kidney.3 SGLTs mediate intestinal absorption and renal reabsorp-
tion of glucose.4 Phlorizin (1), a b-aryl glucoside, is a specific inhibitor of SGLTs (Scheme 1).5

Upon subcutaneous injection, phlorizin (1) has been demonstrated to lower blood glucose levels
in diabetic animal models by promoting urinary glucose excretion.6 One weakness of phlorizin
(1) as an agent is its inactivation via conversion to phloretin (2) by b-glucosidases in the
intestine.3,7 Phloretin (2) is a weak SGLT inhibitor with the undesired effect of inhibiting the

Scheme 1.
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facilitated glucose transporters (GLUTs) which mediate the uptake of glucose into a variety of
cells, most notably muscle. Researchers at Tanabe have studied analogs of phlorizin (1) and
discovered T-1095A (3) and its prodrug T-1095 (4).8 T-1095 (4) can be administered orally, is
metabolized to T-1095A (3), and inhibits renal SGLTs, thereby inducing urinary glucose
excretion and decreasing blood glucose levels in diabetic animal models. Spurred by these
observations, we became interested in designing phlorizin (1) analogs in which the glycosidic
bond was replaced by a more stable connection. One classic method for achieving this goal is to
construct a related C-glycoside, e.g. 5.9 Such derivatives would be stable to glycosidases while
maintaining a similar structure to phlorizin (1) or T-1095A (3). A short efficient method of
synthesis amenable to analog production was required and Johnson’s Suzuki cross-coupling
protocol was selected.10

A model coupling between 2-bromoacetophenone and exo-glycal 610 was explored (Scheme
2).11 Precedented stereoselective hydroboration of exo-glycal 6 with 9-BBN in refluxing THF,
followed by Suzuki coupling of the resulting alkylborane yielded the b-C-glycoside 7 in 55%
yield. In addition, a second product was isolated and has been assigned the structure 8.
Acetylation of 8 yielded the monoacetate 9 whose COSY and ROESY spectra support its
assignment.12 Although optimization of the reaction conditions to moderate (or eliminate) the
production of 8 could be envisioned, we did not initiate such studies due to our desire to
evaluate acyclic C-glycosides as potential SGLT inhibitors.

Scheme 2.

A concise preparation of an aglycone related to T-1095 (4) was also developed (Scheme 3).
2,6-Dihydroxy acetophenone 10 was monoprotected with MOMCl and condensed with aldehyde
1213 under basic aldol conditions to yield enone 13 in good yield. Standard hydrogenation
conditions (H2, Pd/C) reduced the alkene, dibenzofuran, and the benzylic ketone, so the milder
Wilkinson’s catalyst was employed and delivered the ketone 14 in moderate yield. Incomplete

Scheme 3.
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conversion and ketone reduction accounted for the remainder of the material. Triflation of 14
then provided aglycone 15 suitable for Suzuki cross coupling.

Aryl bromide 1614 and aryl triflate 15 behaved similarly to 2-bromoacetophenone in the
Suzuki coupling reaction (Scheme 4). Coupling of bromide 16 with the hydroboration products
of exo-glycal 6 provided the protected C-glycoside 17 and its acyclic relative 19. The assignment
of the structure of 19 was supported by the formation of monoacetate 20 under acetylation
conditions. The MOM protecting groups were cleanly removed from 17 and 19 to yield
C-glycoside 18 and the pentaol 21. Triflate 15 also underwent Suzuki coupling to provide 22 and
24. In this case, deprotection also unmasked a phenol which has been shown to be critical to
phlorizin’s (1) in vivo activity.15

Scheme 4. (a) 6, Pd(dppf)·CH2Cl2, K3PO4, H2O, DMF, rt, 18 h; (b) HCl, MeOH, H2O, 91–95%; (c) Ac2O, Et3N,
CH2Cl2, 85%

In vitro examination of C-glycosides 18 and 23 in several assays indicated these compounds
were much weaker inhibitors of SGLT than phlorizin (1), indicating the importance of the
glycosidic oxygen in this family of SGLT inhibitors.16
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